Response latency to lingual taste stimulation distinguishes neuron types within the geniculate ganglion.

نویسندگان

  • Joseph M Breza
  • Alexandre A Nikonov
  • Robert J Contreras
چکیده

The purpose of this study was to investigate the role of response latency in discrimination of chemical stimuli by geniculate ganglion neurons in the rat. Accordingly, we recorded single-cell 5-s responses from geniculate ganglion neurons (n = 47) simultaneously with stimulus-evoked summated potentials (electrogustogram; EGG) from the anterior tongue to signal when the stimulus contacted the lingual epithelium. Artificial saliva served as the rinse solution and solvent for all stimuli [(0.5 M sucrose, 0.03-0.5 M NaCl, 0.01 M citric acid, and 0.02 M quinine hydrochloride (QHCl)], 0.1 M KCl as well as for 0.1 M NaCl +1 μM benzamil. Cluster analysis separated neurons into four groups (sucrose specialists, NaCl specialists, NaCl/QHCl generalists and acid generalists). Artificial saliva elevated spontaneous firing rate and response frequency of all neurons. As a rule, geniculate ganglion neurons responded with the highest frequency and shortest latency to their best stimulus with acid generalist the only exception. For specialist neurons and NaCl/QHCl generalists, the average response latency to the best stimulus was two to four times shorter than the latency to secondary stimuli. For NaCl-specialist neurons, response frequency increased and response latency decreased systematically with increasing NaCl concentration; benzamil significantly decreased NaCl response frequency and increased response latency. Acid-generalist neurons had the highest spontaneous firing rate and were the only group that responded consistently to citric acid and KCl. For many acid generalists, a citric-acid-evoked inhibition preceded robust excitation. We conclude that response latency may be an informative coding signal for peripheral chemosensory neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Response Latency to Lingual Taste Stimulation Distinguishes Neuron

1 TYPES WITHIN THE GENICULATE GANGLION 2 3 Joseph M. Breza, Alexandre A. Nikonov, and Robert J. Contreras 4 Florida State University 5 Department of Psychology and Program in Neuroscience 6 Tallahassee, Florida 32306-4301 7 8 9 10 RUNNING HEAD: RESPONSE LATENCY 11 12 13 14 Correspondence to: 15 Robert J. Contreras, Ph.D. 16 The James C. Smith Professor of Psychology & Neuroscience 17 Florida St...

متن کامل

Distinctive neurophysiological properties of embryonic trigeminal and geniculate neurons in culture.

Neurons in trigeminal and geniculate ganglia extend neurites that share contiguous target tissue fields in the fungiform papillae and taste buds of the mammalian tongue and thereby have principal roles in lingual somatosensation and gustation. Although functional differentiation of these neurons is central to formation of lingual sensory circuits, there is little known about electrophysiologica...

متن کامل

Gustatory neuron types in rat geniculate ganglion.

We used extracellular single-cell recording procedures to characterize the chemical and thermal sensitivity of the rat geniculate ganglion to lingual stimulation, and to examine the effects of specific ion transport antagonists on salt transduction mechanisms. Hierarchical cluster analysis of the responses from 73 single neurons to 3 salts (0.075 and 0.3 M NaCl, KCl, and NH(4) Cl), 0.5 M sucros...

متن کامل

Page 1 Temperature Modulates Taste Responsiveness and Stimulates Gustatory Neurons in the Rat Geniculate Ganglion

In humans, temperature influences taste intensity and quality perception, and thermal stimulation itself may elicit taste sensations. However, peripheral coding mechanisms of taste have generally been examined independently of the influence of temperature. In anesthetized rats, we characterized the single-cell responses of geniculate ganglion neurons to (1) 0.5 M sucrose, 0.1 M NaCl, 0.01 M cit...

متن کامل

Biphasic functions for the GDNF-Ret signaling pathway in chemosensory neuron development and diversification

The development of the taste system relies on the coordinated regulation of cues that direct the simultaneous development of both peripheral taste organs and innervating sensory ganglia, but the underlying mechanisms remain poorly understood. In this study, we describe a novel, biphasic function for glial cell line-derived neurotrophic factor (GDNF) in the development and subsequent diversifica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 103 4  شماره 

صفحات  -

تاریخ انتشار 2010